Mapping Forest Composition with Landsat Time Series: An Evaluation of Seasonal Composites and Harmonic Regression

Author:

Adams BryceORCID,Iverson Louis,Matthews Stephen,Peters MatthewORCID,Prasad Anantha,Hix David M.

Abstract

The Landsat program has long supported pioneering research on the recovery of forest information by remote sensing technologies for several decades, and efforts to improve the thematic resolution and accuracy of forest compositional products remains an area of continued innovation. Recent development and application of Landsat time series analysis offers unique opportunities for quantifying seasonality and trend components among different forest types for developing alternative feature sets for forest vegetation mapping. Within a large forested landscape in Southeastern Ohio, USA, we examined the use of harmonic metrics developed from time series of all available Landsat-8 observations (2013–2019) relative to seasonal image composites, including accompanying spectral components and vegetation indices. A reference dataset among three sources was integrated and used to categorize forest inventory data into seven forest type classes and gradient compositional response. Results showed that the combination of harmonic metrics and topographic variables achieved an accuracy agreement with the reference data of 74.9% relative to seasonal composites (71.6%) and spectral indices (70.3%). Differences in agreement were attributed to improved discrimination of three heterogeneous upland hardwood classes and an early-successional, young forest class, all forest types of primary interest among managers across the region. Variable importance metrics often identified the cosine and sine terms that quantify the seasonality in spectral values in the harmonic feature space, suggesting these aspects best support the characterization of forest types at greater thematic detail than seasonal compositing procedures. This study demonstrates how advanced time series metrics can improve forest type modeling and forest gradient quantifications, thus showcasing a need for continued exploration of such approaches across different forest types.

Funder

U.S. Forest Service

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3