Remote Sensing Classification and Mapping of Forest Dominant Tree Species in the Three Gorges Reservoir Area of China Based on Sample Migration and Machine Learning

Author:

Zhang Wenbo123,Liu Xiaohuang13ORCID,Xu Bin4,Liu Jiufen123,Li Hongyu123,Zhao Xiaofeng123ORCID,Luo Xinping13,Wang Ran123,Xing Liyuan13,Wang Chao13,Zhao Honghui13

Affiliation:

1. Comprehensive Survey Command Center for Natural Resources, China Geological Survey, Beijing 100055, China

2. School of Earth Science and Resources, China University of Geosciences (Beijing), Beijing 100083, China

3. Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing 100055, China

4. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

The distribution of forest-dominant tree species is crucial for ecosystem assessment. Remote sensing monitoring requires annual ground sample data, but consistent field surveys are challenging. This study addresses this by combining sample migration learning and machine learning for multi-year tree species classification in the Three Gorges Reservoir area in China. Using the continuous change detection and classification (CCDC) algorithm, sample data from 2023 were successfully migrated to 2018–2022, achieving high migration accuracy (R2 = 0.8303, RMSE = 4.64). Based on migrated samples, random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) algorithms classified forest tree species with overall accuracies above 70% and Kappa coefficients above 0.6. XGB. They outperformed other algorithms, with classification accuracy of over 80% and Kappa above 0.75 in almost all years. The final map indicates stable distribution from 2018 to 2023, with eucalyptus covering over 40% of the forest area, followed by horsetail pine, fir, cypress, and wetland pine.

Funder

Geological Survey Project of China Geological Survey

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3