Surface Deformation Analysis of the Houston Area Using Time Series Interferometry and Emerging Hot Spot Analysis

Author:

Khan Shuhab D.ORCID,Gadea Otto C. A.ORCID,Tello Alvarado Alyssa,Tirmizi Osman A.ORCID

Abstract

Cities in the northern Gulf of Mexico, such as Houston, have experienced one of the fastest rates of subsidence, with groundwater/hydrocarbon withdrawal being considered the primary cause. This work reports substantial ground subsidence in a few parts of Greater Houston and adjoining areas not reported before. Observation of surface deformation using interferometric synthetic aperture radar (InSAR) data obtained from Sentinel-1A shows total subsidence of up to 9 cm in some areas from 2016 to 2020. Most of the area within the Houston city limits shows no substantial subsidence, but growing suburbs around the city, such as Katy in the west, Spring and The Woodlands in the north and northwest, and Fresno in the south, show subsidence. In this study, we performed emerging hot spot analysis on InSAR displacement products to identify areas undergoing significant subsidence. To investigate the contributions of groundwater to subsidence, we apply optimized hot spot analysis to groundwater level data collected over the past 31 years from over 71,000 water wells and look at the correlation with fault surface deformation patterns. To evaluate the contribution of oil/gas pumping, we applied optimized hot spot analysis to known locations of oil and gas wells. The high rate of water pumping in the suburbs is the main driver of subsidence, but oil/gas withdrawal plays an important role in areas such as Mont Belvieu. Displacement time series shows that the Clodine, Hockley, and Woodgate faults are active, whereas the Long Point Fault shows no motion, although it was once very active.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3