GOM20: A Stable Geodetic Reference Frame for Subsidence, Faulting, and Sea-Level Rise Studies along the Coast of the Gulf of Mexico

Author:

Wang GuoquanORCID,Zhou Xin,Wang Kuan,Ke Xue,Zhang Yongwei,Zhao Ruibin,Bao Yan

Abstract

We have established a stable regional geodetic reference frame using long-history (13.5 years on average) observations from 55 continuously operated Global Navigation Satellite System (GNSS) stations adjacent to the Gulf of Mexico (GOM). The regional reference frame, designated as GOM20, is aligned in origin and scale with the International GNSS Reference Frame 2014 (IGS14). The primary product from this study is the seven-parameters for transforming the Earth-Centered-Earth-Fixed (ECEF) Cartesian coordinates from IGS14 to GOM20. The frame stability of GOM20 is approximately 0.3 mm/year in the horizontal directions and 0.5 mm/year in the vertical direction. The regional reference frame can be confidently used for the time window from the 1990s to 2030 without causing positional errors larger than the accuracy of 24-h static GNSS measurements. Applications of GOM20 in delineating rapid urban subsidence, coastal subsidence and faulting, and sea-level rise are demonstrated in this article. According to this study, subsidence faster than 2 cm/year is ongoing in several major cities in central Mexico, with the most rapid subsidence reaching to 27 cm/year in Mexico City; a large portion of the Texas and Louisiana coasts are subsiding at 3 to 6.5 mm/year; the average sea-level-rise rate (with respect to GOM20) along the Gulf coast is 2.6 mm/year with a 95% confidence interval of ±1 mm/year during the past five decades. GOM20 provides a consistent platform to integrate ground deformational observations from different remote sensing techniques (e.g., GPS, InSAR, LiDAR, UAV-Photogrammetry) and ground surveys (e.g., tide gauge, leveling surveying) into a unified geodetic reference frame and enables multidisciplinary and cross-disciplinary research.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3