Tree Species Classification of Backpack Laser Scanning Data Using the PointNet++ Point Cloud Deep Learning Method

Author:

Liu BingjieORCID,Chen Shuxin,Huang HuaguoORCID,Tian Xin

Abstract

To investigate forest resources, it is necessary to identify the tree species. However, it is a challenge to identify tree species using 3D point clouds of trees collected by light detection and ranging (LiDAR). PointNet++, a point cloud deep learning network, can effectively classify 3D objects. It is important to establish high-quality individual tree point cloud datasets when applying PointNet++ to identifying tree species. However, there are different data processing methods to produce sample datasets, and the processes are tedious. In this study, we suggest how to select the appropriate method by designing comparative experiments. We used the backpack laser scanning (BLS) system to collect point cloud data for a total of eight tree species in three regions. We explored the effect of tree height on the classification accuracy of tree species by using different point cloud normalization methods and analyzed the effect of leaf point clouds on classification accuracy by separating the leaves and wood of individual tree point clouds. Five downsampling methods were used: farthest point sampling (FPS), K-means, random, grid average sampling, and nonuniform grid sampling (NGS). Data with different sampling points were designed for the experiments. The results show that the tree height feature is unimportant when using point cloud deep learning methods for tree species classification. For data collected in a single season, the leaf point cloud has little effect on the classification accuracy. The two suitable point cloud downsampling methods we screened were FPS and NGS, and the deep learning network could provide the most accurate tree species classification when the number of individual tree point clouds was in the range of 2048–5120. Our study further illustrates that point-based end-to-end deep learning methods can be used to classify tree species and identify individual tree point clouds. Combined with the low-cost and high-efficiency BLS system, it can effectively improve the efficiency of forest resource surveys.

Funder

National Natural Science Foundation of China

Fundamental Research Funds of CAF

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3