A Strategy for Variable-Scale InSAR Deformation Monitoring in a Wide Area: A Case Study in the Turpan–Hami Basin, China

Author:

Wang Yuedong,Feng Guangcai,Li ZhiweiORCID,Luo Shuran,Wang Haiyan,Xiong Zhiqiang,Zhu Jianjun,Hu JunORCID

Abstract

In recent years, increasing available synthetic aperture radar (SAR) satellite data and gradually developing interferometric SAR (InSAR) technology have provided the possibility for wide-scale ground-deformation monitoring using InSAR. Traditionally, the InSAR data are processed by the existing time-series InSAR (TS–InSAR) technology, which has inefficient calculation and redundant results. In this study, we propose a wide-area InSAR variable-scale deformation detection strategy (hereafter referred to as the WAVS–InSAR strategy). The strategy combines stacking technology for fast ground-deformation rate calculation and advanced TS–InSAR technology for obtaining fine deformation time series. It adopts an adaptive recognition algorithm to identify the spatial distribution and area of deformation regions (regions of interest, ROI) in the wide study area and uses a novel wide-area deformation product organization structure to generate variable-scale deformation products. The Turpan–Hami basin in western China is selected as the wide study area (277,000 km2) to verify the proposed WAVS–InSAR strategy. The results are as follows: (1) There are 32 deformation regions with an area of ≥1 km2 and a deformation magnitude of greater than ±2 cm/year in the Turpan–Hami basin. The deformation area accounts for 2.4‰ of the total monitoring area. (2) A large area of ground subsidence has occurred in the farmland areas of the ROI, which is caused by groundwater overexploitation. The popularization and application of facility agriculture in the ROI have increased the demand for irrigation water. Due to the influence of the tectonic fault, the water supply of the ROI is mainly dependent on groundwater. Huge water demand has led to a continuous net deficit in aquifers, leading to land subsidence. The WAVS–InSAR strategy will be helpful for InSAR deformation monitoring at a national/regional scale and promoting the engineering application of InSAR technology.

Funder

National Natural Science Foundation of China

National Science Fund for Distinguished Young Scholars of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3