DACLnet: A Dual-Attention-Mechanism CNN-LSTM Network for the Accurate Prediction of Nonlinear InSAR Deformation

Author:

Lu Junyu1,Wang Yuedong1ORCID,Zhu Yafei2,Liu Jingtao1,Xu Yang3,Yang Honglei1ORCID,Wang Yuebin1

Affiliation:

1. School of Land Science and Technology, China University of Geosciences, Beijing 100083, China

2. School of Engineering and Technology, China University of Geosciences, Beijing 100083, China

3. School of Information Engineering, China University of Geosciences, Beijing 100083, China

Abstract

Nonlinear deformation is a dynamically changing pattern of multiple surface deformations caused by groundwater overexploitation, underground coal mining, landslides, urban construction, etc., which are often accompanied by severe damage to surface structures or lead to major geological disasters; therefore, the high-precision monitoring and prediction of nonlinear surface deformation is significant. Traditional deep learning methods encounter challenges such as long-term dependencies or difficulty capturing complex spatiotemporal patterns when predicting nonlinear deformations. In this study, we developed a dual-attention-mechanism CNN-LSTM network model (DACLnet) to monitor and accurately predict nonlinear surface deformations precisely. Using advanced time series InSAR results as input, the DACLnet integrates the spatial feature extraction capability of a convolutional neural network (CNN), the advantages of the time series learning of a long short-term memory (LSTM) network, and the enhanced focusing effect of the dual-attention mechanism on crucial information, significantly improving the prediction accuracy of nonlinear surface deformations. The groundwater overexploitation area of the Turpan Basin, China, is selected to test the nonlinear deformation prediction effect of the proposed DACLnet. The results demonstrate that the DACLnet accurately captures developmental trends in historical surface deformations and effectively predicts surface deformations for the next two months in the study area. Compared to traditional LSTM and CNN-LSTM methods, the root mean square error (RMSE) of the DACLnet improved by 85.09% and 68.57%, respectively. These research results can provide crucial technical support for the early warning and prevention of geological disasters and can serve as an effective alternative tool for short-term ground subsidence prediction in areas lacking hydrogeological and other related data.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3