Remote Sensing Monitoring and Analysis of Spatiotemporal Changes in China’s Anthropogenic Carbon Emissions Based on XCO2 Data

Author:

Wang Yanjun123,Wang Mengjie123,Teng Fei123,Ji Yiye123

Affiliation:

1. Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying, Mapping and Remote Sensing, Hunan University of Science and Technology, Xiangtan 411201, China

2. National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China

3. School of Earth Science and Space Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

Abstract

The monitoring and analysis of the spatiotemporal distribution of anthropogenic carbon emissions is an important part of realizing China’s regional “dual carbon” goals; that is, the aim is for carbon emissions to peak in 2030 an to achieve carbon neutrality by 2060, as well as achieving sustainable development of the ecological environment. The column-averaged CO2 dry air mole fraction (XCO2) of greenhouse gas remote sensing satellites has been widely used to monitor anthropogenic carbon emissions. However, selecting a reasonable background region to eliminate the influence of uncertainty factors is still an important challenge to monitor anthropogenic carbon emissions by using XCO2. Aiming at the problems of the imprecise selection of background regions, this study proposes to enhance the anthropogenic carbon emission signal in the XCO2 by using the regional comparison method based on the idea of zoning. First, this study determines the background region based on the Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC) dataset and potential temperature data. Second, the average value of the XCO2 in the background area was extracted and taken as the XCO2 background. On this basis, the XCO2 anomaly (XCO2ano) was obtained by regional comparison method. Finally, the spatiotemporal variation characteristics and trends of XCO2ano were analyzed, and the correlations between the number of residential areas and fossil fuel emissions were calculated. The results of the satellite observation data experiments over China from 2010 to 2020 show that the XCO2ano and anthropogenic carbon emissions have similar spatial distribution patterns. The XCO2ano in China changed significantly and was in a positive growth trend as a whole. The XCO2ano values have a certain positive correlation with the number of residential areas and observations of fossil fuel emissions. The purpose of this research is to enhance the anthropogenic carbon emission signals in satellite observation XCO2 data by combining ODIAC data and potential temperature data, achieve the remote sensing monitoring and analysis of spatiotemporal changes in anthropogenic carbon emissions over China, and provide technical support for the policies and paths of regional carbon emission reductions and ecological environmental protection.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3