Estimation Model and Spatio-Temporal Analysis of Carbon Emissions from Energy Consumption with NPP-VIIRS-like Nighttime Light Images: A Case Study in the Pearl River Delta Urban Agglomeration of China

Author:

Song Mengru1,Wang Yanjun12ORCID,Han Yongshun1,Ji Yiye1

Affiliation:

1. School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

2. State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China

Abstract

Urbanization is growing at a rapid pace, and this is being reflected in the rising energy consumption from fossil fuels, which is contributing significantly to greenhouse gas impacts and carbon emissions (CE). Aiming at the problems of the time delay, inconsistency, uneven spatial coverage scale, and low precision of the current regional carbon emissions from energy consumption accounting statistics, this study builds a precise model for estimating the carbon emissions from regional energy consumption and analyzes the spatio-temporal characteristics. Firstly, in order to estimate the carbon emissions resulting from energy consumption, a fixed effects model was built using data on province energy consumption and NPP-VIIRS-like nighttime lighting data. Secondly, the PRD urban agglomeration was selected as the case study area to estimate the carbon emissions from 2012 to 2020 and predict the carbon emissions from 2021 to 2023. Then, their multi-scale spatial and temporal distribution characteristics were analyzed through trends and hotspots. Lastly, the influence factors of CE from 2012 to 2020 were examined with the OLS, GWR, GTWR, and MGWR models, as well as a ridge regression to enhance the MGWR model. The findings indicate that, from 2012 to 2020, the carbon emissions in the PRD urban agglomeration were characterized by the non-equilibrium feature of “high in the middle and low at both ends”; from 2021 to 2023, the central and eastern regions saw the majority of its high carbon emission areas, the east saw the region with the highest rate of growth, the east and the periphery of the high value area were home to the area of medium values, while the southern, central, and northern regions were home to the low value areas; carbon emissions were positively impacted by population, economics, land area, and energy, and they were negatively impacted by science, technology, and environmental factors. This study could provide technical support for the long-term time-series monitoring and remote sensing inversion of the carbon emissions from energy consumption in large-scale, complex urban agglomerations.

Funder

National Natural Science Foundation of China

Foundation of the State Key Laboratory of Public Big Data

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3