Source Diagnosis of Solid Oxide Fuel Cell System Oscillation Based on Data Driven

Author:

Fu Xiaowei,Liu Yanlin,Li Xi

Abstract

The solid oxide fuel cell (SOFC) is a new energy technology that has the advantages of low emissions and high efficiency. However, oscillation and propagation often occur during the power generation of the system, which causes system performance degradation and reduced service life. To determine the root cause of multi-loop oscillation in an SOFC system, a data-driven diagnostic method is proposed in this paper. In our method, kernel principal component analysis (KPCA) and transfer entropy were applied to the system oscillation fault location. First, based on the KPCA method and the Oscillation Significance Index (OSI) of the system process variable, the process variables that were most affected by the oscillations were selected. Then, transfer entropy was used to quantitatively analyze the causal relationship between the oscillation variables and the oscillation propagation path, which determined the root cause of the oscillation. Finally, Granger causality (GC) analysis was used to verify the correctness of our method. The experimental results show that the proposed method can accurately and effectively locate the root cause of the SOFC system’s oscillation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3