Human Cytotoxicity, Hemolytic Activity, Anti-Inflammatory Activity and Aqueous Solubility of Ibuprofen-Based Ionic Liquids

Author:

Bastos Joana C.,Vieira Nicole S. M.ORCID,Gaspar Maria ManuelaORCID,Pereiro Ana B.ORCID,Araújo João M. M.ORCID

Abstract

Ionic liquids (ILs) are a potential solution to the general problem of low solubility, polymorphism and low bioavailability of active pharmaceutical ingredients (APIs). In this work, we report on the synthesis of three pharmaceutically active ILs (API-ILs) based on ibuprofen, one of the most commonly available over-the-counter nonsteroidal anti-inflammatory drugs (NSAIDs), with imidazolium cations ([C2C1Im][Ibu] and [C2(OH)C1Im][Ibu]) and a cholinium cation ([N1112(OH)][Ibu]). An upgrade to the aqueous solubility (water and biological simulated fluids) for the ibuprofen-based ILs relative to the ibuprofen’s neutral and salt form (sodium ibuprofen) was verified. The cytotoxic profiles of the synthesized API-ILs were characterized using two human cells lines, Caco-2 colon carcinoma cells and HepG-2 hepatocellular carcinoma cells, up to ibuprofen’s maximum plasma concentration (Cmax) without impairing their cytotoxicity response. Additionally, the EC50 in the Caco-2 cell line revealed similar results for both parent APIs and API-ILs. The biocompatibility of the ibuprofen-based ILs was also evaluated through a hemolytic activity assay, and the results showed that all the ILs were hemocompatible at concentrations higher than the ibuprofen Cmax. Moreover, the anti-inflammatory properties of the API-ILs were assessed through the inhibition of bovine serum albumin (BSA) denaturation and inhibition of cyclooxygenases (COX-1 and COX-2). The results showed that [C2C1Im][Ibu], [C2(OH)C1Im][Ibu] and [N1112(OH)][Ibu] maintained their anti-inflammatory response to ibuprofen, with improved selectivity towards COX-2, allowing the development of safer NSAIDs and the recognition of new avenues for selective COX-2 inhibitors in cancer chemotherapy and neurological diseases such as Alzheimer’s and Parkinson’s.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Reference71 articles.

1. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine

2. Pharmaceutical polymorphism: The phenomenon affecting the performance of drug and an approach to enhance drug solubility, stability and bioavailability;Maurya;World J. Pharm. Sci.,2016

3. Ionic liquids: green and tailor-made solvents in drug delivery

4. The Role of Ionic Liquids in the Pharmaceutical Field: An Overview of Relevant Applications

5. Ionic Liquids—Progress on the Fundamental Issues

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3