An Energy-Efficient and Secure Routing Protocol for Intrusion Avoidance in IoT-Based WSN

Author:

Haseeb KhalidORCID,Almogren AhmadORCID,Islam Naveed,Ud Din IkramORCID,Jan Zahoor

Abstract

Due to the advancement of information and communication technologies, the use of Internet of Things (IoT) devices has increased exponentially. In the development of IoT, wireless sensor networks (WSNs) perform a vital part and comprises of low-cost smart devices for information gathering. However, such smart devices have constraints in terms of computation, processing, memory and energy resources. Along with such constraints, one of the fundamental challenges for WSN is to achieve reliability with the security of transmitted data in a vulnerable environment against malicious nodes. This paper aims to develop an energy-efficient and secure routing protocol (ESR) for intrusion avoidance in IoT based on WSN to increase the network period and data trustworthiness. Firstly, the proposed protocol creates different energy-efficient clusters based on the intrinsic qualities of nodes. Secondly, based on the (k,n) threshold-based Shamir secret sharing scheme, the reliability and security of the sensory information among the base station (BS) and cluster head are achieved. The proposed security scheme presents a light-weight solution to cope with intrusions generated by malicious nodes. The experimental results using the network simulator (NS-2) demonstrate that the proposed routing protocol achieved improvement in terms of network lifetime as 37%, average end-to-end delay as 24%, packet delivery ratio as 30%, average communication cost as 29%, network overhead as 28% and the frequency of route re-discoveries as 38% when compared with the existing work under dynamic network topologies.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3