Neuro‐fuzzy‐based cluster formation scheme for energy‐efficient data routing in IOT‐enabled WSN

Author:

Sundaram Paulraj Sakthi Shunmuga1ORCID,Kannabiran Vijayan1

Affiliation:

1. Department of Electronics and Communication Engineering, College of Engineering and Technology SRM Institute of Science and Technology Chennai India

Abstract

SummaryInternet of things–enabled wireless sensor networks face challenges like inflexibility, poor scalability, suboptimal cluster head selection, and energy inefficiencies. This is due to the faster data transmission rates between cluster nodes during data packet routing. This creates unnecessary energy consumption burdens for those actively transmitting nodes. Conceptually, an effective cluster formation phase supports better data routing mechanisms, while sustaining the energy efficiency of individual nodes. This paper proposes a Neuro‐Fuzzy based Cluster Formation (NFCF) scheme to facilitate adaptive and energy‐efficient cluster topologies. NFCF utilizes fuzzy logic and neural networks to identify optimal super nodes for flexible cluster formations. This approach enables configurable cluster sizes along with inclusion/exclusion criteria for member nodes based on energy thresholds. Parameters evaluated for node selection include the degree of super node, expected energy per cluster, energy variance, and residual energy. Nodes not meeting the thresholds are excluded. The neural network updates fuzzy rules to guide optimal clustering decisions based on anticipated energy dynamics under different conditions. The performance of the proposed NFCF scheme is evaluated based on objective function changes related to data transmission, individual node energy variation, energy variance before and after transmissions, and averaged end‐to‐end delay across transmission cycles. Results are compared against genetic fuzzy clustering, fuzzy energy‐aware clustering, fuzzy‐based distributed clustering, fuzzy logic‐based multi‐hop clustering, and fuzzy weighted k‐means clustering.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3