Harmonic Loads Classification by Means of Currents’ Physical Components

Author:

Beck YuvalORCID,Machlev Ram

Abstract

Electric load identification and classification for smart grid environment can improve the power service for both consumers and producers. The main concept of electric load identification and classification is to disaggregate various loads and categorize them. In this paper, a new practical method for electric load identification and classification is presented. The method is based on using a power monitor to analyze a real measured current waveform of a grid-connected device. A set number of features is extracted using the currents’ physical components-based power theory decomposition. Using currents’ physical components ensures a constant number of features, which maintains the signal’s characteristics regardless of the harmonic content. These features are used to train a supervised classifier based on two techniques: artificial neural network and nearest neighbor search. The theory is outlined, and experimental results are shown. This paper demonstrates high accuracy performance in identifying an electric load from a designated database. Furthermore, the results show a definite classification of an untrained operation state of a device to the closest trained operation state, for example, the excitation angle of a dimmer. In a comparative study, the method is shown to outperform other state-of-the-art techniques, which are based on harmonic components.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3