Deep learning and signal processing based algorithm for autorecognition of harmonic loads

Author:

Srikanth Pullabhatla1,Koley Chiranjib2

Affiliation:

1. EED, NIT Durgapur, West Bengal & CCE (R&D) South, DRDO Secunderabad, India

2. National Institute of Technology, Durgapur, West Bengal, India

Abstract

A convolution neural network (CNN) based deep learning method has been proposed for automatic classification and localization of nonlinear loads present in an interconnected power system. The identification of nonlinear loads has been previously dealt with the use of Nonlinear Auto Regression neural network with eXogenous inputs (NARX), Backpropagation Neural Network (BPNN), Probabilistic Neural Network (PNN), Artificial Neural Networks (ANN) and Fuzzy Logic (FL). However, these techniques had not explored the area of classification of industrial and domestic nonlinear loads in an interconnected power system. Also, a Deep learning-based solution for identification of the type of nonlinear load has not been reported in the literature to date. Hence, to address these shortcomings, an IEEE-9 Bus system with industrial nonlinear loads has been used to obtain various current waveforms with distortions. The recorded current waveforms are transformed into a time-frequency (TF) domain plane, and the obtained images are then fed to the deep learning algorithm. The colored images of the TF plots of each type of nonlinear load in Red-Green-Blue (RGB) index provide the best visual features for extraction. The TF domain signatures of individual events are scaled to a standard size before feeding to the algorithm. Through these TF signatures, unique features were extracted with the deep learning algorithm, and then passed on to different stages of convolution and max-pooling with fully connected layers. The softmax classifier at the end classifies the input data into the type of nonlinear present in the power system. The algorithm, when run at different buses, also identifies the location of the nonlinear load. The proposed methodology avoids the usage of any additional fusion layer for obtaining unique features, reduces the training time and maintains the highest accuracy of 100%.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Method for determining the harmonic contribution of consumer installations based on the application of passive filters;IET Generation, Transmission & Distribution;2024-07

2. Research on Identification Method of Electricity Consumption Behavior of Small and Medium-Sized Enterprises Based on Random Forest;2023 IEEE International Conference on Energy Internet (ICEI);2023-10-20

3. Determination of the grid impedance in power consumption modes with harmonics;Journal of Mining Institute;2023-05-04

4. Digital transformation through advances in artificial intelligence and machine learning;Journal of Intelligent & Fuzzy Systems;2022-01-25

5. Harmonic/Inter-harmonic Estimation: Key Issues and Challenges;2021 IEEE 6th International Conference on Computing, Communication and Automation (ICCCA);2021-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3