A Federated Learning Latency Minimization Method for UAV Swarms Aided by Communication Compression and Energy Allocation

Author:

Zeng Liang1,Wang Wenxin2ORCID,Zuo Wei3ORCID

Affiliation:

1. School of Cyberspace Science and Technology, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China

2. School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China

3. School of Automation, Beijing Institute of Technology, Beijing 100081, China

Abstract

Unmanned aerial vehicle swarms (UAVSs) can carry out numerous tasks such as detection and mapping when outfitted with machine learning (ML) models. However, due to the flying height and mobility of UAVs, it is very difficult to ensure a continuous and stable connection between ground base stations and UAVs, as a result of which distributed machine learning approaches, such as federated learning (FL), perform better than centralized machine learning approaches in some circumstances when utilized by UAVs. However, in practice, functions that UAVs must perform often, such as emergency obstacle avoidance, require a high sensitivity to latency. This work attempts to provide a comprehensive analysis of energy consumption and latency sensitivity of FL in UAVs and present a set of solutions based on an efficient asynchronous federated learning mechanism for edge network computing (EAFLM) combined with ant colony optimization (ACO) for the cases where UAVs execute such latency-sensitive jobs. Specifically, UAVs participating in each round of communication are screened, and only the UAVs that meet the conditions will participate in the regular round of communication so as to compress the communication times. At the same time, the transmit power and CPU frequency of the UAV are adjusted to obtain the shortest time of an individual iteration round. This method is verified using the MNIST dataset and numerical results are provided to support the usefulness of our proposed method. It greatly reduces the communication times between UAVs with a relatively low influence on accuracy and optimizes the allocation of UAVs’ communication resources.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3