Research on Deep Learning Automatic Vehicle Recognition Algorithm Based on RES-YOLO Model

Author:

Li YanyiORCID,Wang Jian,Huang JinORCID,Li YupingORCID

Abstract

With the introduction of concepts such as ubiquitous mapping, mapping-related technologies are gradually applied in autonomous driving and target recognition. There are many problems in vision measurement and remote sensing, such as difficulty in automatic vehicle discrimination, high missing rates under multiple vehicle targets, and sensitivity to the external environment. This paper proposes an improved RES-YOLO detection algorithm to solve these problems and applies it to the automatic detection of vehicle targets. Specifically, this paper improves the detection effect of the traditional YOLO algorithm by selecting optimized feature networks and constructing adaptive loss functions. The BDD100K data set was used for training and verification. Additionally, the optimized YOLO deep learning vehicle detection model is obtained and compared with recent advanced target recognition algorithms. Experimental results show that the proposed algorithm can automatically identify multiple vehicle targets effectively and can significantly reduce missing and false rates, with the local optimal accuracy of up to 95% and the average accuracy above 86% under large data volume detection. The average accuracy of our algorithm is higher than all five other algorithms including the latest SSD and Faster-RCNN. In average accuracy, the RES-YOLO algorithm for small data volume and large data volume is 1.0% and 1.7% higher than the original YOLO. In addition, the training time is shortened by 7.3% compared with the original algorithm. The network is then tested with five types of local measured vehicle data sets and shows satisfactory recognition accuracy under different interference backgrounds. In short, the method in this paper can complete the task of vehicle target detection under different environmental interferences.

Funder

the major scientific and technological innovation project of Shandong Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3