Abstract
With the introduction of concepts such as ubiquitous mapping, mapping-related technologies are gradually applied in autonomous driving and target recognition. There are many problems in vision measurement and remote sensing, such as difficulty in automatic vehicle discrimination, high missing rates under multiple vehicle targets, and sensitivity to the external environment. This paper proposes an improved RES-YOLO detection algorithm to solve these problems and applies it to the automatic detection of vehicle targets. Specifically, this paper improves the detection effect of the traditional YOLO algorithm by selecting optimized feature networks and constructing adaptive loss functions. The BDD100K data set was used for training and verification. Additionally, the optimized YOLO deep learning vehicle detection model is obtained and compared with recent advanced target recognition algorithms. Experimental results show that the proposed algorithm can automatically identify multiple vehicle targets effectively and can significantly reduce missing and false rates, with the local optimal accuracy of up to 95% and the average accuracy above 86% under large data volume detection. The average accuracy of our algorithm is higher than all five other algorithms including the latest SSD and Faster-RCNN. In average accuracy, the RES-YOLO algorithm for small data volume and large data volume is 1.0% and 1.7% higher than the original YOLO. In addition, the training time is shortened by 7.3% compared with the original algorithm. The network is then tested with five types of local measured vehicle data sets and shows satisfactory recognition accuracy under different interference backgrounds. In short, the method in this paper can complete the task of vehicle target detection under different environmental interferences.
Funder
the major scientific and technological innovation project of Shandong Province, China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献