SPA-Net: A Deep Learning Approach Enhanced Using a Span-Partial Structure and Attention Mechanism for Image Copy-Move Forgery Detection

Author:

Zhao Kaiqi1ORCID,Yuan Xiaochen2ORCID,Xie Zhiyao2ORCID,Xiang Yan1,Huang Guoheng3ORCID,Feng Li1ORCID

Affiliation:

1. School of Computer Science and Engineering, Macau University of Science and Technology, Macao 999078, China

2. Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China

3. School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China

Abstract

With the wide application of visual sensors and development of digital image processing technology, image copy-move forgery detection (CMFD) has become more and more prevalent. Copy-move forgery is copying one or several areas of an image and pasting them into another part of the same image, and CMFD is an efficient means to expose this. There are improper uses of forged images in industry, the military, and daily life. In this paper, we present an efficient end-to-end deep learning approach for CMFD, using a span-partial structure and attention mechanism (SPA-Net). The SPA-Net extracts feature roughly using a pre-processing module and finely extracts deep feature maps using the span-partial structure and attention mechanism as a SPA-net feature extractor module. The span-partial structure is designed to reduce the redundant feature information, while the attention mechanism in the span-partial structure has the advantage of focusing on the tamper region and suppressing the original semantic information. To explore the correlation between high-dimension feature points, a deep feature matching module assists SPA-Net to locate the copy-move areas by computing the similarity of the feature map. A feature upsampling module is employed to upsample the features to their original size and produce a copy-move mask. Furthermore, the training strategy of SPA-Net without pretrained weights has a balance between copy-move and semantic features, and then the module can capture more features of copy-move forgery areas and reduce the confusion from semantic objects. In the experiment, we do not use pretrained weights or models from existing networks such as VGG16, which would bring the limitation of the network paying more attention to objects other than copy-move areas.To deal with this problem, we generated a SPANet-CMFD dataset by applying various processes to the benchmark images from SUN and COCO datasets, and we used existing copy-move forgery datasets, CMH, MICC-F220, MICC-F600, GRIP, Coverage, and parts of USCISI-CMFD, together with our generated SPANet-CMFD dataset, as the training set to train our model. In addition, the SPANet-CMFD dataset could play a big part in forgery detection, such as deepfakes. We employed the CASIA and CoMoFoD datasets as testing datasets to verify the performance of our proposed method. The Precision, Recall, and F1 are calculated to evaluate the CMFD results. Comparison results showed that our model achieved a satisfactory performance on both testing datasets and performed better than the existing methods.

Funder

Research Project of the Macao Polytechnic University

Science and Technology Development Fund of Macau SAR

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3