DRRU-Net: DCT-Coefficient-Learning RRU-Net for Detecting an Image-Splicing Forgery

Author:

Seo Youngmin1,Kook Joongjin1ORCID

Affiliation:

1. Department of Information Security Engineering, Sangmyung University, 31 Sangmyungdae-gil, Dongnam-gu, Cheonan-si 31066, Republic of Korea

Abstract

In this paper, we propose a lightweight deep learning network (DRRU-Net) for image-splicing forgery detection. DRRU-Net is an architecture that combines RRU-Net for learning the visual content of images and image acquisition artifacts, and a JPEG artifact learning module for learning compression artifacts in the discrete cosine transform (DCT) domain. The backbone model of a network based on pre-training, such as CAT-Net, a representative network for image forgery detection, has a relatively large number of parameters, resulting in overfitting in a small dataset, which hinders generalization performance. Therefore, in this paper, the learning module is designed to learn the characteristics according to the DCT domain in real time without pre-training. In the experiments, the proposed network architecture and training method of DRRU-Net show that the network parameters are smaller than CAT-Net, the forgery detection performance is better than that of RRU-Net, and the generalization performance for various datasets can be improved.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Changing history: Doctored photographs affect memory for past public events;Sacchi;Appl. Cogn. Psychol.,2007

2. Mishra, M., and Adhikary, F. (2013). Digital Image Tamper Detection Techniques-A Comprehensive Study. arXiv.

3. Bharti, C.N., and Tandel, P. (2016). A Survey of Image Forgery Detection Techniques, IEEE.

4. A Survey of Partition-Based Techniques for Copy-Move Forgery Detection;Xingming;Sci. World J.,2014

5. Pixel-Based Image Forgery Detection: A Review;Ansari;IETE J. Educ.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3