Nested Binary Classifier as an Outlier Detection Method in Human Activity Recognition Systems

Author:

Duraj Agnieszka1ORCID,Duczymiński Daniel1

Affiliation:

1. Institute of Information Technology, Lodz University of Technology, al. Politechniki 8, 93-590 Łódź, Poland

Abstract

The present article is devoted to outlier detection in phases of human movement. The aim was to find the most efficient machine learning method to detect abnormal segments inside physical activities in which there is a probability of origin from other activities. The problem was reduced to a classification task. The new method is proposed based on a nested binary classifier. Test experiments were then conducted using several of the most popular machine learning algorithms (linear regression, support vector machine, k-nearest neighbor, decision trees). Each method was separately tested on three datasets varying in characteristics and number of records. We set out to evaluate the effectiveness of the models, basic measures of classifier evaluation, and confusion matrices. The nested binary classifier was compared with deep neural networks. Our research shows that the method of nested binary classifiers can be considered an effective way of recognizing outlier patterns for HAR systems.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Outlier Detection in Human Activity Recognition Systems;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3