Publisher
Springer Nature Switzerland
Reference15 articles.
1. Ali, A., Samara, W., Alhaddad, D., Ware, A., Saraereh, O.A.: Human activity and motion pattern recognition within indoor environment using convolutional neural networks clustering and naive bayes classification algorithms. Sensors 22(3), 1016 (2022)
2. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L., et al.: A public domain dataset for human activity recognition using smartphones. In: ESANN, vol. 3, p. 3 (2013)
3. Batool, M., Jalal, A., Kim, K.: Sensors technologies for human activity analysis based on SVM optimized by PSO algorithm. In: 2019 International Conference on Applied and Engineering Mathematics (ICAEM), pp. 145–150. IEEE (2019)
4. Duraj, A., Duczymiński, D.: Nested binary classifier as an outlier detection method in human activity recognition systems. Entropy 25(8), 1121 (2023)
5. Ferreira, P.J., Cardoso, J.M., Mendes-Moreira, J.: k nn prototyping schemes for embedded human activity recognition with online learning. Computers 9(4), 96 (2020)