Abstract
As an innovative technology, the impedance-based technique has been extensively studied for the structural health monitoring (SHM) of various civil structures. The technique’s advantages include cost-effectiveness, ease of implementation on a complex structure, robustness to early-stage failures, and real-time damage assessment capabilities. Nonetheless, very few studies have taken those advantages for monitoring the health status and the structural condition of wind turbine structures. Thus, this paper is motivated to give the reader a general outlook of how the impedance-based SHM technology has been implemented to secure the safety and serviceability of the wind turbine structures. Firstly, possible structural failures in wind turbine systems are reviewed. Next, physical principles, hardware systems, damage quantification, and environmental compensation algorithms are outlined for the impedance-based technique. Afterwards, the current status of the application of this advanced technology for health monitoring and damage identification of wind turbine structural components such as blades, tower joints, tower segments, substructure, and the foundation are discussed. In the end, the future perspectives that can contribute to developing efficient SHM systems in the green energy field are proposed.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献