Analysis of the Thermal Conductivity of a Bio-Based Composite Made of Hemp Shives and a Magnesium Binder

Author:

Kubiś MichałORCID,Łapka PiotrORCID,Cieślikiewicz ŁukaszORCID,Sahmenko GenadijsORCID,Sinka MarisORCID,Bajare DianaORCID

Abstract

The evolution of bio-based composites in the building industry is strongly linked with the growing demand for sustainable development, which is relevant nowadays. Hemp shives are a large group of organic residues that are obtained in the process of oil extraction as well as straw processing. These residues could be utilized along with a binder as constituents in the manufacture of bio-based building composites. This study is focused on the impact of density and relative humidity on the effective thermal conductivity of hemp shive-based bio-composites with a magnesium binder. For this reason, a series of samples with variable densities was manufactured and subjected to conditioning in a climatic chamber at a constant temperature and different relative humidity settings. As soon as samples were stabilized, the guarded hot plate method was applied to determine their thermal conductivities. Before each measurement, great care was taken during sample preparation to ensure minimum moisture loss during long-lasting measurements. The results showed that an increase in sample density from 200 kg/m3 to 600 kg/m3 corresponded to up to a three-fold higher composite thermal conductivity. In the case of sample conditioning, a change in relative humidity from a very low value to 90% also resulted in almost 60% average higher thermal conductivity.

Funder

National Centre for Research and Development

Warsaw University of Technology, Faculty of Power and Aeronautical Engineering

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3