Influence of compaction direction on selected thermal and moisture properties of a lightweight composite based on magnesium binder and organic filler

Author:

Brzyski P,Jóźwiak M,Siwiec J,Sinka M,Medved I

Abstract

Abstract An alternative binder in thermal insulation composites based on hemp shives is magnesium cement. It provides higher mechanical strength of the composite in comparison to the lime binder. Thanks to this, it is possible to reduce the amount of binder in relation to the shives, and as a result, obtain a lower density and better thermal insulation parameters. The process of compacting the composite mixture determines many of its properties. The longitudinal shape of the shives causes that during compaction they are arranged mainly perpendicular to the direction of compaction. The unidirectional course of the fibers in the shives determines the anisotropic nature of both the shives and the composite. The article presents the results of tests of thermal conductivity and capillary rise of the compacted composite in the direction perpendicular and parallel to the heat flux and moisture transport. A composite with a low binder content, characterized by a density of about 250 kg/m3, was tested. The direction of the mix compaction had an impact on the differences in the obtained results. This phenomenon can be used, for example, in the production of blocks or other prefabricated elements, using the appropriate direction of compaction depending on the expected properties and applications of the composite.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3