Thermal Model Approach to the YASA Machine for In-Wheel Traction Applications

Author:

Wang Guangchen,Wang Yingjie,Gao YuanORCID,Hua Wei,Ni Qinan,Zhang HengliangORCID

Abstract

The axial-flux permanent magnet (AFPM) machines with yokeless and segmented armature (YASA) topology are suitable for in-wheel traction systems due to the high power density and efficiency. To guarantee the reliable operation of the YASA machines, an accurate thermal analysis should be undertaken in detail during the electrical machine design phase. The technical contribution of this paper is to establish a detailed thermal analysis model of the YASA machine by the lumped parameter thermal network (LPTN) method. Compared with the computational fluid dynamics (CFD) method and the finite element (FE) method, the LPTN method can obtain an accurate temperature distribution with low time consumption. Firstly, the LPTN model of each component of the YASA machine is constructed with technical details. Secondly, the losses of the YASA machine are obtained by the electromagnetic FE analysis. Then, the temperature distribution of the machine can be calculated by the LPTN model and loss information. Finally, a prototype of the YASA machine is manufactured and its temperature distribution under different operating conditions is tested by TT-K-30 thermocouple temperature sensors. The experimental data matches the LPTN results well.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3