Multi-Objective Optimization of Yokeless and Segmented Armature Machine for In-Wheel Traction Applications Based on the Taguchi Method

Author:

Su Liang1,Wang Guangchen2,Gao Yuan3ORCID,Zanchetta Pericle45,Zhang Hengliang2ORCID

Affiliation:

1. Xiamen King Long United Automotive Industry Co., Ltd., Xiamen 361023, China

2. School of Electrical Engineering, Southeast University, Nanjing 210096, China

3. School of Engineering, University of Leicester, Leicester LE1 7RH, UK

4. Power Electronics, Machines and Control (PEMC), University of Nottingham, Nottingham NG7 2RD, UK

5. Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy

Abstract

For electrical machines with complex structures, the design space of parameters can be large with high dimensions during optimization. Considering the calculation cost and time consumption, it is hard to optimize all the design parameters at the same time. Therefore, in that situation, sensitivity analysis of these design parameters is usually used to sort out crucial parameters. In this paper, the sensitivity analysis-based Taguchi method is applied to optimize the axial-flux permanent magnet (AFPM) machine with yokeless and segmented armature (YASA) topology for an in-wheel traction system. According to the key parameters and their sensitivity analysis, the optimal machine scheme to meet the performance requirements can be formed. In this case study, the machine performance is improved significantly after optimization. Lastly, the experimental results verify the accuracy of the model used in this study.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3