Life Cycle Assessment Model of a Catering Product: Comparing Environmental Impacts for Different End-of-Life Scenarios

Author:

Avató Judit LovasnéORCID,Mannheim ViktoriaORCID

Abstract

This paper assesses the primary energy and environmental impacts of a restaurant main course product’s lifecycle, especially focusing on end-of-life (EoL) stage. In the first step, a cradle-to-grave complex life cycle assessment (LCA) model of the product has been set up from the extraction of the required raw materials through the preparation, cooking and use phase to the end-of-life. In the second step, three scenarios (landfilling, incineration, and composting) were compared for the generated food waste in the end-of-life stage given that one of the biggest challenges in waste management is the optimal management of food waste. We calculated eleven environmental impact categories for the examined food product with the help of GaBi 9.0 software. During our research work, the primary energy was examined in each phase. In the third step, a comparison between the traditional and “sous vide” cooking technologies has been created to optimise of the cooking/frying life cycle phase. This paper basically answers three main questions: (1) How can the main environmental impacts and primary energy throughout the whole life cycle of the examined product be characterised? (2) What methods can optimise the different life cycle stages while reducing and recycling energy and material streams? and (3) what is the most optimal waste management scenario at the end-of-life stage? Based on the analysis, the highest environmental impact comes from the preparation phase and the end-of-life scenario for the traditional incineration caused almost twice the environmental load as the landfilling of the food waste. Composting has the lowest environmental impact, and the value of the primary energy for composting is very low. The sous vide cooking technique is advantageous, and the continuously controlled conditions result in a more reliable process. These research results can be used to design sustainable cooking and catering with lower environmental impacts and energy resources in catering units.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3