Cleaner Production of Cementitious Materials Containing Bioaggregates Based on Mussel Shells: A Review

Author:

de Freitas José Júlio Garcia12ORCID,Vieira Carlos Maurício Fontes1,Natalli Juliana Fadini1,Lavander Henrique David2,de Azevedo Afonso Rangel Garcez3ORCID,Marvila Markssuel Teixeira4ORCID

Affiliation:

1. LAMAV—Advanced Materials Laboratory, UENF—State University of the Northern Rio de Janeiro, Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, Brazil

2. Campus Piúma, IFES—Federal Institute of Espírito Santo, Augusto Da Costa Oliveira, 660, Piúma 29285-000, Brazil

3. LECIV—Civil Engineering Laboratory, UENF—State University of the Northern Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, Brazil

4. Rio Paranaíba Campus, UFV—Federal University of Viçosa, Rodovia BR 230 KM 7, Rio Paranaiba 38810-000, Brazil

Abstract

This text provides a bibliographic review on bioaggregates obtained from mussel shells and similar materials, evaluating the main properties altered with the use of this type of recycled aggregate in cementitious materials. The bibliographic analysis highlights the main problems and challenges of using bioaggregates related to the presence of organic impurities and chlorides and due to the lamellar and flat shape of the grains, which impair adhesion in the transition zone. The advantages of mussel shell bioaggregates include their limestone-based chemical composition, properties that are inert and compatible with the application, and a specific mass close to conventional aggregates. Regarding their use in cementitious materials, in general, there is a reduction in workability and an increase in incorporated air, porosity, and water absorption, resulting in a reduction in compressive strength. However, it is observed that lower replacement levels make it possible to use bioaggregates, especially fine aggregates, in cementitious materials for different applications, such as structural concrete, coating mortar, and sealing systems. The positive points are related to the promotion of thermal insulation and the reduction in density, which allow for various uses for cementitious materials with bioaggregates, such as lightweight concrete, permeable concrete, and thermal and acoustic insulation mortars. It is concluded that the use of bioaggregates in concrete and mortars is viable, but the need for more experimental work to solve the main problems encountered, such as high water absorption and low compressive strength, is highlighted.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3