Design and Implementation of the Bidirectional DC-DC Converter with Rapid Energy Conversion

Author:

Chen Bing-Zhang,Liao HsuanORCID,Chen LindaORCID,Chen Jiann-Fuh

Abstract

The bidirectional DC-DC converters are widely used in the energy storage system (ESS) and DC distribution system. The power capacity is limited when the converter is operated with smooth power transfer. In addition, the directions of the inductor current and the capacitor voltage cannot change instantaneously. In this study, a rapid energy conversion technique for smoothing and accelerating the energy transfer under the same specification of the main components in steady state is proposed. Moreover, a bidirectional DC-DC converter with a high conversion ratio is proposed to overcome the commonly low voltage input from renewable energy sources. The operating principles of the proposed converter’s step-down and step-up modes are discussed in this study. Furthermore, to achieve rapid energy conversion, digital control is a crucial component in the converter system. A digital signal processor is used as the control platform, and a control strategy is formulated to achieve rapid energy conversion. The bidirectional DC-DC prototype converter with a 24 V battery, a DC bus of 200 V, and an output power of 500 W is constructed to confirm the feasibility of rapid energy conversion. The proposed converter can be operated in CCM, BCM, and DCM conditions. The transfer period can be completed within one switching cycle when the proposed converter is operated in BCM or DCM. The energy is freewheeled before energy conversion when the proposed converter is operated in CCM condition. In the experiment, the minimum transfer period is 6.29 µs on the DCM stage.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Charging Systems/Techniques of Electric Vehicle:;Solar Energy and Sustainable Development Journal;2024-06-08

2. Analysis of Interleaved Bidirectional DC/DC Converter for Battery Charging & Discharging Applications;2024 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES);2024-05-03

3. A novel multi-port high-gain bidirectional DC–DC converter for energy storage system integration with DC microgrids;Journal of Energy Storage;2024-05

4. Bi-Directional Converter for Hybrid Energy storage system;2023 7th International Conference on Computer Applications in Electrical Engineering-Recent Advances (CERA);2023-10-27

5. Revolutionizing rural electrification with PV Integrated energy storage system: The DC House Solution;2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3);2023-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3