Using Privacy Respecting Sound Analysis to Improve Bluetooth Based Proximity Detection for COVID-19 Exposure Tracing and Social Distancing

Author:

Bahle Gernot,Fortes Rey Vitor,Bian SizhenORCID,Bello Hymalai,Lukowicz Paul

Abstract

We propose to use ambient sound as a privacy-aware source of information for COVID-19-related social distance monitoring and contact tracing. The aim is to complement currently dominant Bluetooth Low Energy Received Signal Strength Indicator (BLE RSSI) approaches. These often struggle with the complexity of Radio Frequency (RF) signal attenuation, which is strongly influenced by specific surrounding characteristics. This in turn renders the relationship between signal strength and the distance between transmitter and receiver highly non-deterministic. We analyze spatio-temporal variations in what we call “ambient sound fingerprints”. We leverage the fact that ambient sound received by a mobile device is a superposition of sounds from sources at many different locations in the environment. Such a superposition is determined by the relative position of those sources with respect to the receiver. We present a method for using the above general idea to classify proximity between pairs of users based on Kullback–Leibler distance between sound intensity histograms. The method is based on intensity analysis only, and does not require the collection of any privacy sensitive signals. Further, we show how this information can be fused with BLE RSSI features using adaptive weighted voting. We also take into account that sound is not available in all windows. Our approach is evaluated in elaborate experiments in real-world settings. The results show that both Bluetooth and sound can be used to differentiate users within and out of critical distance (1.5 m) with high accuracies of 77% and 80% respectively. Their fusion, however, improves this to 86%, making evident the merit of augmenting BLE RSSI with sound. We conclude by discussing strengths and limitations of our approach and highlighting directions for future work.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BeSound: Bluetooth-Based Position Estimation Enhancing with Cross-Modality Distillation;2024 International Conference on Activity and Behavior Computing (ABC);2024-05-29

2. Body-Area Capacitive or Electric Field Sensing for Human Activity Recognition and Human-Computer Interaction;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2024-03-06

3. CSI-Based Proximity Estimation: Data-Driven and Model-Based Approaches;IEEE Open Journal of the Communications Society;2024

4. RF fingerprint extraction and device recognition algorithm based on multi-scale fractal features and APWOA-LSSVM;EURASIP Journal on Advances in Signal Processing;2023-12-21

5. Close-Range Indoor Proximity Detection for COVID-19 Exposure Notifications Using Smartphone Magnetometer Traces;2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN);2023-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3