Body-Area Capacitive or Electric Field Sensing for Human Activity Recognition and Human-Computer Interaction

Author:

Bian Sizhen1ORCID,Liu Mengxi2ORCID,Zhou Bo2ORCID,Lukowicz Paul2ORCID,Magno Michele1ORCID

Affiliation:

1. ETH Zürich, Switzerland

2. DFKI, Germany

Abstract

Due to the fact that roughly sixty percent of the human body is essentially composed of water, the human body is inherently a conductive object, being able to, firstly, form an inherent electric field from the body to the surroundings and secondly, deform the distribution of an existing electric field near the body. Body-area capacitive sensing, also called body-area electric field sensing, is becoming a promising alternative for wearable devices to accomplish certain tasks in human activity recognition (HAR) and human-computer interaction (HCI). Over the last decade, researchers have explored plentiful novel sensing systems backed by the body-area electric field, like the ring-form smart devices for sign language recognition, the room-size capacitive grid for indoor positioning, etc. On the other hand, despite the pervasive exploration of the body-area electric field, a comprehensive survey does not exist for an enlightening guideline. Moreover, the various hardware implementations, applied algorithms, and targeted applications result in a challenging task to achieve a systematic overview of the subject. This paper aims to fill in the gap by comprehensively summarizing the existing works on body-area capacitive sensing so that researchers can have a better view of the current exploration status. To this end, we first sorted the explorations into three domains according to the involved body forms: body-part electric field, whole-body electric field, and body-to-body electric field, and enumerated the state-of-art works in the domains with a detailed survey of the backed sensing tricks and targeted applications. We then summarized the three types of sensing frontends in circuit design, which is the most critical part in body-area capacitive sensing, and analyzed the data processing pipeline categorized into three kinds of approaches. The outcome will benefit researchers for further body-area electric field explorations. Finally, we described the challenges and outlooks of body-area electric sensing, followed by a conclusion, aiming to encourage researchers to further investigations considering the pervasive and promising usage scenarios backed by body-area capacitive sensing.

Publisher

Association for Computing Machinery (ACM)

Reference176 articles.

1. Blink: A Fully Automated Unsupervised Algorithm for Eye-Blink Detection in EEG Signals

2. Hand Gestures Recognition Using Radar Sensors for Human-Computer-Interaction: A Review

3. Carles Aliau Bonet and Ramon Pallàs Areny. 2012. A fast method to estimate body capacitance to ground. In Proceedings of XX IMEKO World Congress 2012, September 9-14, Busan South Korea. 1--4.

4. Julio Angulo and Erik Wästlund. 2011. Exploring touch-screen biometrics for user identification on smart phones. In IFIP PrimeLife International Summer School on Privacy and Identity Management for Life. Springer, 130--143.

5. Design of a capacitive ECG sensor for unobtrusive heart rate measurements

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3