Remote Sensing Image Classification with a Graph-Based Pre-Trained Neighborhood Spatial Relationship

Author:

Guan XudongORCID,Huang Chong,Yang Juan,Li Ainong

Abstract

Previous knowledge of the possible spatial relationships between land cover types is one factor that makes remote sensing image classification “smarter”. In recent years, knowledge graphs, which are based on a graph data structure, have been studied in the community of remote sensing for their ability to build extensible relationships between geographic entities. This paper implements a classification scheme considering the neighborhood relationship of land cover by extracting information from a graph. First, a graph representing the spatial relationships of land cover types was built based on an existing land cover map. Empirical probability distributions of the spatial relationships were then extracted using this graph. Second, an image was classified based on an object-based fuzzy classifier. Finally, the membership of objects and the attributes of their neighborhood objects were joined to decide the final classes. Two experiments were implemented. Overall accuracy of the two experiments increased by 5.2% and 0.6%, showing that this method has the ability to correct misclassified patches using the spatial relationship between geo-entities. However, two issues must be considered when applying spatial relationships to image classification. The first is the “siphonic effect” produced by neighborhood patches. Second, the use of global spatial relationships derived from a pre-trained graph loses local spatial relationship in-formation to some degree.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences, CAS “Light of West China” Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3