Geographic Scene Understanding of High-Spatial-Resolution Remote Sensing Images: Methodological Trends and Current Challenges

Author:

Ye PengORCID,Liu GuoweiORCID,Huang YiORCID

Abstract

As one of the primary means of Earth observation, high-spatial-resolution remote sensing images can describe the geometry, texture and structure of objects in detail. It has become a research hotspot to recognize the semantic information of objects, analyze the semantic relationship between objects and then understand the more abstract geographic scenes in high-spatial-resolution remote sensing images. Based on the basic connotation of geographic scene understanding of high-spatial-resolution remote sensing images, this paper firstly summarizes the keystones in geographic scene understanding, such as various semantic hierarchies, complex spatial structures and limited labeled samples. Then, the achievements in the processing strategies and techniques of geographic scene understanding in recent years are reviewed from three layers: visual semantics, object semantics and concept semantics. On this basis, the new challenges in the research of geographic scene understanding of high-spatial-resolution remote sensing images are analyzed, and future research prospects have been proposed.

Funder

the Open Fundation of Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special Issue on Remote Sensing Applications in Archaeology, Geography, and the Earth Sciences;Applied Sciences;2023-06-28

2. A support tensor machine-based fault diagnosis method for railway turnout;2023 IEEE International Conference on Prognostics and Health Management (ICPHM);2023-06-05

3. Self-Supervised Learning for High-Resolution Remote Sensing Images Change Detection With Variational Information Bottleneck;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3