What Makes an Online Review More Helpful: An Interpretation Framework Using XGBoost and SHAP Values

Author:

Meng Yuan,Yang Nianhua,Qian Zhilin,Zhang Gaoyu

Abstract

Online product reviews play important roles in the word-of-mouth marketing of e-commerce enterprises, but only helpful reviews actually influence customers’ purchase decisions. Current research focuses on how to predict the helpfulness of a review but lacks a thorough analysis of why it is helpful. In this paper, feature sets covering review text and context cues are firstly proposed to represent review helpfulness. Then, a set of gradient boosted trees (GBT) models is introduced, and the optimal one, which as implemented in eXtreme Gradient Boosting (XGBoost), is chosen to predict and explain review helpfulness. Specially, by including the SHAP (Shapley) values method to quantify feature contribution, this paper presents an integrated framework to better interpret why a review is helpful at both the macro and micro levels. Based on real data from Amazon.cn, this paper reveals that the number of words contributes the most to the helpfulness of reviews on headsets and is interactively influenced by features like the number of sentences or feature frequency, while feature frequency contributes the most to the helpfulness of facial cleanser reviews and is interactively influenced by the number of adjectives used in the review or the review’s entropy. Both datasets show that individual feature contributions vary from review to review, and individual joint contributions gradually decrease with the increase of feature values.

Publisher

MDPI AG

Subject

Computer Science Applications,General Business, Management and Accounting

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3