Zearalenone Induces Blood-Testis Barrier Damage through Endoplasmic Reticulum Stress-Mediated Paraptosis of Sertoli Cells in Goats

Author:

Liu Tengfei1,Liu Gengchen1,Xu Yinghuan1,Huang Yuqi2,Zhang Yunxuan1,Wu Yongjie1,Xu Yongping1

Affiliation:

1. College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China

2. College of Life Sciences, Northwest A&F University, Xianyang 712100, China

Abstract

Zearalenone (ZEA) is present worldwide as a serious contaminant of food and feed and causes male reproductive toxicity. The implication of paraptosis, which is a nonclassical paradigm of cell death, is unclear in ZEA-induced male reproductive disorders. In this study, the toxic effects of ZEA on the blood-testis barrier (BTB) and the related mechanisms of paraptosis were detected in goats. ZEA exposure, in vivo, caused a significant decrease in spermatozoon quality, the destruction of seminiferous tubules, and damage to the BTB integrity. Furthermore, ZEA exposure to Sertoli cells (SCs) in vitro showed similar dysfunction in structure and barrier function. Importantly, the formation of massive cytoplasmic vacuoles in ZEA-treated SCs corresponded to the highly swollen and dilative endoplasmic reticulum (ER), and paraptosis inhibition significantly alleviated ZEA-induced SC death and vacuolization, which indicated the important contribution of paraptosis in ZEA-induced BTB damage. Meanwhile, the expression of ER stress marker proteins was increased after ZEA treatment but decreased under the inhibition of paraptosis. The vacuole formation and SC death, induced by ZEA, were remarkably blocked by ER stress inhibition. In conclusion, these results facilitate the exploration of the mechanisms of the SC paraptosis involved in ZEA-induced BTB damage in goats.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3