Author:
Denkena Berend,Bergmann Benjamin,Stoppel Dennis
Abstract
Based on the drive signals of a milling center, process forces can be reconstructed. Therefore, a novel approach is presented to reconstruct the process forces with a long short-term memory neural network (LSTM) using drive signals as an input. The LSTM is evaluated and compared to a model-based approach. The latter compensates nonlinearities and disturbances such as friction and inertia. For training of the LSTM, multiple milling processes are considered to enhance the generalizability. Training data is generated by recording drive signals and process forces measured by a dynamometer. The LSTM is then evaluated using a test set, which comprises new process parameters. It is shown that the LSTM has a lower root mean square error (RMSE) in comparison to the model-based approach. Especially, when changing the feed motion direction during milling, the neural network clearly outperforms the model-based approach. Nevertheless, there are processes, where the LSTM induced oscillations, which do not correspond to the measured forces.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献