The Applicability of 2-amino-4,6-diphenyl-pyridine-3-carbonitrile Sensors for Monitoring Different Types of Photopolymerization Processes and Acceleration of Cationic and Free-Radical Photopolymerization Under Near UV Light

Author:

Ortyl Joanna,Fiedor Paweł,Chachaj-Brekiesz AnnaORCID,Pilch Maciej,Hola Emilia,Galek Mariusz

Abstract

The performance of a series of 2-amino-4,6-diphenyl-pyridine-3-carbonitrile derivatives as fluorescent molecular sensors for monitoring photopolymerization processes of different monomers by the Fluorescence Probe Technique (FPT) was studied. It has been shown that the new derivatives are characterized by much higher sensitivity than the commercially available 7-diethylamino-4-methylcoumarin (Coumarin 1) and trans-2-(2′,5′-dimethoxyphenyl)ethenyl-2,3,4, 5,6-pentafluorobenzene (25ST) probes. It has been discovered that the 2-amino-4,6-diphenyl-pyridine-3-carbonitrile derivatives accelerate the cationic photopolymerization process initiated with diphenyliodonium photoinitiators at the wavelength where the photoinitiator alone does not work. They are particularly efficient for the photoinitiation of cationic photopolymerization of an epoxide and vinyl monomers. Consequently, the application of the 2-amino-4,6-diphenyl-pyridine-3-carbonitrile derivatives in a dual role: (a) as fluorescent sensors for monitoring the free-radical, thiol-ene and cationic polymerization progress, and (b) as long-wavelength co-initiators for diphenyliodonium salts initiators, is proposed.

Funder

Fundacja na rzecz Nauki Polskiej

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference48 articles.

1. Single Molecule Fluorescence Spectroscopy at Ambient Temperature

2. Principles of Fluorescence Spectroscopy;Lakowicz,1983

3. Molecular Fluorescence: Principles and Applications;Valeur,2001

4. Fluorescent Probes for Sensing Processes in Polymers

5. Applicability of quinolizino-coumarins for monitoring free radical photopolymerization by fluorescence spectroscopy;Kamińska;Polym. Test.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3