Simulation of Battery Thermal Management System for Large Maritime Electric Ship’s Battery Pack

Author:

Jia Fu12,Lee Geesoo3ORCID

Affiliation:

1. Department of Mechanical System Engineering, Tongmyong University, Busan 48520, Republic of Korea

2. Department of Marine Engineering Equipment, Tianjin Maritime College, Tianjin 300350, China

3. Department of Automotive Engineering, Tongmyong University, Busan 48520, Republic of Korea

Abstract

In recent years, large power batteries have been widely used not only in automobiles and other vehicles but also in maritime vessels. The thermal uniformity of large marine battery packs significantly affects the performance, safety, and longevity of the electric ship. As a result, the thermal management of large power batteries has become a crucial technical challenge with traditional battery management system (BMS) that cannot effectively solve the battery heating problem caused by electrochemical reactions and joule heating during operation. To address this gap, a battery thermal management system (BTMS) has been newly designed. This article presents the design of a large marine battery pack, which features a liquid cooling system integrated into both the bottom and side plates of each pack. The flow plate is constructed from five independent units, each connected by manifold structures at both ends. These connections ensure the formation of a stable and cohesive flow plate assembly. Although research on the BTMS is relatively advanced, there is a notable lack of studies examining the effects of liquid temperature, flow rate, and battery discharge rate on the temperature consistency and uniformity of large marine battery packs. This work seeks to design the cooling system for the battery pack and analyzes the impact of the temperature, flow rate, and battery discharge rate of the liquid fluid on the consistency and uniformity of the battery pack temperature on the overall structure of the battery pack. It was found that, in low discharge conditions, there was good temperature consistency between the battery packs and between the different batteries within the battery pack, and the temperature difference did not exceed 1 °C. However, under high discharge rates, a C-rate of 4C, there might have been a decrease in temperature consistency; the temperature rise rate even exceeded 50% compared to when the discharge rate was low. The flow rate in the liquid flow characteristics had little effect on the temperature consistency between the batteries and the temperature uniformity on the battery surface, and the temperature fluctuation was maintained within 1 °C. Conversely, the liquid flow temperature had little effect on the temperature distribution between the batteries, but it caused discrepancies in the surface temperature of the batteries. In addition, the liquid flow temperature could cause the overall temperature of the battery to increase or decrease, which also occurs under different discharge rates.

Funder

Ministry of Trade, Industry & Energy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3