Evaluation of the Lifecycle Environmental Benefits of Full Battery Powered Ships: Comparative Analysis of Marine Diesel and Electricity

Author:

Jeong ByongugORCID,Jeon HyeonminORCID,Kim Seongwan,Kim Jongsu,Zhou Peilin

Abstract

The paper aims to investigate the holistic environmental benefits of using a battery system on a roll on/roll off (ro-ro) passenger ship which was originally fitted with a diesel engine engaged in Korean coastal service. The process of this research has multiple layers. First, the operating profiles of the case ship were collected, such as speed, output, operation time and the configuration of the diesel propulsion system. Second, the full battery propulsion system, in place of the diesel system, was modelled and simulated on a power simulation software (PSIM) platform to verify the adequacy of the proposed battery propulsion system. Then, the life cycle assessment method was applied to comprehensively compare the environmental footprint of the diesel-mechanical and fully battery-powered vessels. A focus was placed on the life cycle of the energy sources consumed by the case ship in consideration of the South Korea’s current energy importation and production status. Three life cycle stages were considered in the analysis: ‘production’, ‘transport’ and ‘use’. With the aid of Sphera GaBi Software Version 2019 and its extensive data library, the environmental impacts at the energy production and transport stages were evaluated, while the same impacts at the use stage were determined based on actual laboratory measurements. The environmental performance of the two scenarios in four impact categories was discussed: global warming potential (GWP), acidification potential (AP), eutrophication potential (EP) and photochemical ozone creation potential (POCP). Results of the comparative analysis are presented based on estimates of the overall reduction in the environmental impact potential, thereby demonstrating the overall benefits of using a battery driven propulsion, with a decrease of the GWP by 35.7%, the AP by 77.6%, the EP by 87.8% and the POCP by 77.2%. A series of sensitivity analyses, however, has delivered the important message that the integration of batteries with marine transportation means may not always be the best solution. The types of energy sources used for electricity generation will be a key factor in determining whether the battery technology can ultimately contribute to cleaner shipping or not. By casting doubts on the benefits of battery propulsion, this paper is believed to offer a meaningful insight into developing a proper road map for electrifying ship propulsion toward zero emission of shipping.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3