Author:
Lei Yingke,Li Da,Zhang Haichuan,Li Xin
Abstract
Due to the explosive development of location-based services (LBS), localization has attracted significant research attention over the past decade. Among the associated techniques, wireless fingerprint positioning has garnered much interest due to its compatibility with existing hardware. At present, with the widespread deployment of long-term evolution (LTE) networks and the uniqueness of wireless information fingerprints, fingerprint positioning based on LTE networks is the mainstream method for outdoor positioning. However, in order to improve its accuracy, this method needs to collect enough data at a large number of reference points, which is a labor-intensive task. In this paper, experimental data are collected at different reference points and then converted into wavelet feature maps. Then, a Deep Convolutional Generative Adversarial Network (DCGAN) is leveraged to generate a symmetric fingerprint database. Localization is then carried out by the proposed Deep Residual Network (Resnet), which is capable of learning reliable features from a fingerprint image database. To further increase the robustness of the positioning system, a variety of data enhancement methods are used. Finally, we experimentally demonstrate that the generated symmetric fingerprint database and proposed Resnet reduce the manpower required for fingerprint database collection and improve the accuracy of the outdoor positioning system.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献