Analytical Calculation of Relationship Temperature and Fatigue and Creep Strength Based on Thermal Activation

Author:

Houjou Keiji1ORCID,Shimamoto Kazumasa1,Akiyama Haruhisa1,Sekiguchi Yu2ORCID,Sato Chiaki2

Affiliation:

1. Nanomaterials Research Institute, The National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8564, Japan

2. Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8501, Japan

Abstract

The purpose of this study was to formulate a mathematical expression for the temperature dependence of adhesive strength using various parameters. Adhesive structures are typically exposed to a broad temperature range, spanning from low to high temperatures; therefore, understanding how their strength depends on temperature is crucial. The strength was measured through tensile, fatigue, and creep tests at temperatures ranging from −60 °C to 135 °C. The properties of these test types were thoroughly investigated by analyzing the strength of the test results from a thermal activity perspective. The results demonstrate that there is a clear relationship between temperature and strength. The intensity decreased with temperature according to the exponential function and could be accurately represented using the parameters of thermal activity. The temperature at which the strength begins to decrease in the fatigue test was higher than in the static tests. Consequently, we were able to accurately express the relationship between the temperature and intensity using certain parameters. Few studies successfully developed a precise nonlinear relationship between temperature and intensity using approximate expressions.

Funder

New Energy and Industrial Technology Development Organization

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3