Abstract
Covering steel surfaces with suitable materials with the capacity to protect against corrosion represents a challenge for both research and industry, as steel, due to its paramount utility, is the most recycled material. This study presents the realization of new sandwich type materials based on 5,10-(4-carboxy-phenyl)-15,20-(4-phenoxy-phenyl)-porphyrin or 5,15-(4-carboxy-phenyl)-10,20-diphenylporphyrin and MnTa2O6 designed to improve corrosion inhibition of steel in aggressive media. The thin films, designed as single- or sandwich-type structures were obtained on carbon steel through the drop-casting technique. Morphological investigations of thin films were carried out by field emission-scanning electron microscopy (SEM) and atomic force microscopy (AFM). The inhibition of a steel corrosion process was evaluated in an aggressive environment of 0.1 M HCl by performing electrochemical investigations such as open circuit potential (OCP) and the potentiodynamic polarization technique. The influence of variations in the cathodic Tafel slopes βc and anodic Tafel slopes βa over the corrosion rates was discussed. The best corrosion inhibition efficiency of 91.76% was realized by the steel electrode covered with sandwich-type layers of 5,15-(4-carboxy-phenyl)-10,20-diphenylporphyrin on the bottom layer and MnTa2O6 on the top. The effect of location of the COOH groups in the cis or trans position on the tetrapyrrolic ring was also discussed to understand the corrosion inhibition mechanism.
Funder
Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii
Romanian Academy
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献