Nanomaterials Based on Collaboration with Multiple Partners: Zn3Nb2O8 Doped with Eu3+ and/or Amino Substituted Porphyrin Incorporated in Silica Matrices for the Discoloration of Methyl Red

Author:

Birdeanu Mihaela1ORCID,Fratilescu Ion2,Epuran Camelia2,Mocanu Liviu1,Ianasi Catalin2ORCID,Lascu Anca2,Fagadar-Cosma Eugenia2ORCID

Affiliation:

1. National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Street 1, 300224 Timisoara, Romania

2. Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania

Abstract

Designing appropriate materials destined for the removal of dyes from waste waters represents a great challenge for achieving a sustainable society. Three partnerships were set up to obtain novel adsorbents with tailored optoelectronic properties using silica matrices, Zn3Nb2O8 oxide doped with Eu3+, and a symmetrical amino-substituted porphyrin. The pseudo-binary oxide with the formula Zn3Nb2O8 was obtained by the solid-state method. The doping of Zn3Nb2O8 with Eu3+ ions was intended in order to amplify the optical properties of the mixed oxide that are highly influenced by the coordination environment of Eu3+ ions, as confirmed by density functional theory (DFT) calculations. The first proposed silica material, based solely on tetraethyl orthosilicate (TEOS) with high specific surface areas of 518–726 m2/g, offered better performance as an adsorbent than the second one, which also contained 3-aminopropyltrimethoxysilane (APTMOS). The contribution of amino-substituted porphyrin incorporated into silica matrices resides both in providing anchoring groups for the methyl red dye and in increasing the optical properties of the whole nanomaterial. Two different types of methyl red adsorption mechanisms can be reported: one based on surface absorbance and one based on the dye entering the pores of the adsorbents due to their open groove shape network.

Funder

Romanian Academy

National Institute of Research and Development for Electrochemistry

Institute of Chemistry “Coriolan Dragulescu”

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3