Simulation of Laser-assisted Directed Energy Deposition of Aluminum Powder: Prediction of Geometry and Temperature Evolution

Author:

Caiazzo FabriziaORCID,Alfieri VittorioORCID

Abstract

One of the main current challenges in the field of additive manufacturing and directed energy deposition of metals, is the need for simulation tools to prevent or reduce the need to adopt a trial-and-error approach to find the optimum processing conditions. A valuable help is offered by numerical simulation, although setting-up and validating a reliable model is challenging, due to many issues related to the laser source, the interaction with the feeding metal, the evolution of the material properties and the boundary conditions. Indeed, many attempts have been reported in the literature, although some issues are usually simplified or neglected. Therefore, this paper is aimed at building a comprehensive numerical model for the process of laser-assisted deposition. Namely: the geometry of the deposited metal is investigated in advance and the most effective reference shape is found to feed the simulation as a function of the governing factors for single- and multi-track, multi-layer deposition; then, a non-stationary thermal model is proposed and the underlying hypotheses to simulate the addition of metal are discussed step-by-step. Validation is eventually conducted, based on experimental evidence. Aluminum alloy 2024 is chosen as feeding metal and substrate.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3