Hybrid Analytical-Numerical Modeling of Surface Geometry Evolution and Deposition Integrity in a Multi-Track Laser-Directed Energy Deposition Process

Author:

Vundru Chaitanya12,Ghosh Gourhari13,Singh Ramesh4

Affiliation:

1. Indian Institute of Technology Bombay Department of Mechanical Engineering, , Mumbai 400076, Maharashtra , India ;

2. Northeastern University Department of Mechanical and Industrial Engineering, , Boston, MA 02115

3. Indian Institute of Technology Jodhpur Department of Mechanical Engineering, , Jodhpur 342030, Rajasthan , India

4. Indian Institute of Technology Bombay Department of Mechanical Engineering, , Mumbai 400076, Maharashtra , India

Abstract

Abstract Modeling multitrack laser-directed energy deposition (LDED) is different from single-track deposition. There is a temporal variation in the deposition geometry and integrity in a multitrack deposition, which is not well understood. This article employs an analytical model for power attenuation and powder catchment in the melt pool in conjunction with a robust fully coupled metallurgical-thermomechanical finite element (FE) model iteratively to simulate the multitrack deposition. The novel hybrid analytical–numerical approach incorporates the effect of preexisting tracks on melt pool formation, powder catchment, geometry evolution, dilution, residual stress, and defect generation. CPM 9V steel powder was deposited on the H13 tool steel substrate for validating the model. The deposition height is found to be a function of the track sequence but reaches a steady-state height after a finite number of tracks. The height variation determines the waviness of the deposited surface and, therefore, the effective layer height. The inter-track spacing (I) plays a vital role in steady-state height evolution. A larger value of I facilitates faster convergence to the steady-state height but increases the surface waviness. The FE model incorporates the effects of differential thermal contraction, volume dilation, and transformation-induced plasticity. It predicts the deposition geometry and integrity as a function of inter-track spacing and powder feed rate. The insufficient remelting of the substrate or the preceding track can induce defects. A method to predict and mitigate these defects has also been presented in this article.

Funder

Department of Science and Technology, Ministry of Science and Technology

Science and Engineering Research Board

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3