Abstract
The SiCf/SiC composite manufactured by chemical vapour infiltration (CVI) is a kind of porous material. Liquid molten salt in a Molten Salt Reactor (MSR) may enter into the porous composites and affect their performance. Through the study of the internal pores in the material, the permeability behaviour of the material can be investigated, which is of great significance to the analysis of the properties of the material itself. However, there is less investigation on effects of molten salt infiltration on the internal pore structure of SiCf/SiC composites. In this paper, a molten salt infiltration experiment of 2D woven SiCf/SiC composites was implemented at 650 °C, 3 atm. SEM, CT and XRD were used to characterize it. The results indicated that the microstructure could be affected by partial molten salt infiltration and temperature change. The distribution of porosity of the composite showed an obvious transformation. The lattice spacing of SiC showed an increased tendancy of stress relaxation.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献