Estimation of Longitudinal Force, Sideslip Angle and Yaw Rate for Four-Wheel Independent Actuated Autonomous Vehicles Based on PWA Tire Model

Author:

Sun Xiaoqiang,Wang Yulin,Hu Weiwei

Abstract

This article introduces an efficient and high-precision estimation framework for four-wheel independently actuated (FWIA) autonomous vehicles based on a novel tire model and adaptive square-root cubature Kalman filter (SCKF) estimation strategy. Firstly, a reliable and concise tire model that considers the tire’s nonlinear mechanics characteristics under combined conditions through the piecewise affine (PWA) identification method is established to improve the accuracy of the lateral dynamics model of FWIA autonomous vehicles. On this basis, the longitudinal relaxation length of each tire is integrated into the lateral dynamics modeling of FWIA autonomous vehicle. A novel nonlinear state function, including the PWA tire model, is proposed in this paper. To reduce the impact of the uncertainty of noise statistics on the estimation accuracy, an adaptive SCKF estimation algorithm based on the maximum a posteriori (MAP) criterion is proposed in the estimation framework. Finally, the estimation accuracy and stability of the adaptive SCKF algorithm are verified by the co-simulation of CarSim and Simulink. The simulation results show that when the statistical characteristics of noise are unknown and the target state changes suddenly under critical maneuvers, the estimation framework proposed in this paper still maintains high accuracy and stability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference54 articles.

1. Opportunities and Challenges of Vehicle-to-Home, Vehicle-to-Vehicle, and Vehicle-to-Grid Technologies

2. Handling Stability and Energy-Saving of Commercial Vehicle Electronically Controlled Hybrid Power Steering System;Yin;J. Jiangsu Univ. Nat. Sci.,2019

3. Frontier Techniques and Prospect of in-wheel motor for Electric Vehicle;Li;J. Jiangsu Univ. Nat. Sci.,2019

4. Algorithm of AEB system for Commercial Vehicle in Curve Road;Ma;J. Jiangsu Univ. Nat. Sci.,2019

5. Global Path planning for Intelligent Vehicles Based on Hybrid SA algorithm;Wu;J. Jiangsu Univ. Nat. Sci.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3