Prediction for Future Yaw Rate Values of Vehicles Using Long Short-Term Memory Network

Author:

Kontos János12ORCID,Kránicz Balázs3,Vathy-Fogarassy Ágnes2ORCID

Affiliation:

1. Continental Automotive Hungary Ltd., 8200 Veszprém, Hungary

2. Department of Computer Science and Systems Technology, University of Pannonia, 8200 Veszprém, Hungary

3. Faculty of Information Technology, University of Pannonia, 8200 Veszprém, Hungary

Abstract

Currently, electric mobility and autonomous vehicles are of top priority from safety, environmental and economic points of view. In the automotive industry, monitoring and processing accurate and plausible sensor signals is a crucial safety-critical task. The vehicle’s yaw rate is one of the most important state descriptors of vehicle dynamics, and its prediction can significantly contribute to choosing the correct intervention strategy. In this article, a Long Short-Term Memory network-based neural network model is proposed for predicting the future values of the yaw rate. The training, validating and testing of the neural network was conducted based on experimental data gathered from three different driving scenarios. The proposed model can predict the yaw rate value in 0.2 s in the future with high accuracy, using sensor signals of the vehicle from the last 0.3 s in the past. The R2 values of the proposed network range between 0.8938 and 0.9719 in the different scenarios, and in a mixed driving scenario, it is 0.9624.

Funder

Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Meta-Learning of Vehicle Yaw Rate Dynamics via Conditional Neural Processes;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3