The Potential of Exploiting Economical Solar Dryer in Food Preservation: Storability, Physicochemical Properties, and Antioxidant Capacity of Solar-Dried Tomato (Solanum lycopersicum) Fruits

Author:

Al Maiman Salah A.,Albadr Nawal A.,Almusallam Ibrahim A.,Al-Saád Mohammed Jawad,Alsuliam Sarah,Osman Magdi A.,Hassan Amro B.ORCID

Abstract

This study investigated the effect of solar drying on storability and physiochemical and antioxidant capacities of dried tomatoes. Sliced fruit was dried at 45 ± 2 °C for 24 h under a solar tunnel dryer and stored at ambient temperature for 90 and 180 days. Solar drying treatments significantly (p < 0.05) reduced the bacterial and mold load, and eliminated Staphylococcus aureus, S. saprophyticus, and Escherichia coli in all samples. Solar drying treatment reduced the water activity of the dried tomato’s to 0.31 that remained at the same level during storage period 180 days. Storage of dried tomato slices resulted in the decrease of both color and vitamin C content while it increased the total carotenoid, lycopene, phenolic compound content, and antioxidant activity. Furthermore, the principle component analysis (PCA) revealed that solar drying of tomato slices enhanced its physicochemical properties, antioxidant capacity particularly after storage for 90 and 180 days. Interestingly, the solar drying process enhanced tomato slices storage and physicochemical characteristics, that resulted in extending the shelf life by up to 6 months, indicating the great potential application of low-tech solar in food industry and could become an emerging effective post-harvest preservative method for seasonal perishable vegetable and fruit, particularly in developing countries.

Funder

Deanship of Scientific Research, King Saud University

German Ministry of Education and Research

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3