Abstract
Animal welfare status is assessed today through visual evaluations requiring an on-farm visit. A convenient alternative would be to detect cow welfare status directly in milk samples, already routinely collected for milk recording. The objective of this study was to propose a novel approach to demonstrate that Fourier transform infrared (FTIR) spectroscopy can detect changes in milk composition related to cows subjected to movement restriction at the tie stall with four tie-rail configurations varying in height and position (TR1, TR2, TR3 and TR4). Milk mid-infrared spectra were collected on weekly basis. Long-term average spectra were calculated for each cow using spectra collected in weeks 8–10 of treatment. Principal component analysis was applied to spectral averages and the scores of principal components (PCs) were tested for treatment effect by mixed modelling. PC7 revealed a significant treatment effect (p = 0.01), particularly for TR3 (configuration with restricted movement) vs. TR1 (recommended configuration) (p = 0.03). The loading spectrum of PC7 revealed high loadings at wavenumbers that could be assigned to biomarkers related to negative energy balance, such as β-hydroxybutyrate, citrate and acetone. This observation suggests that TR3 might have been restrictive for cows to access feed. Milk FTIR spectroscopy showed promising results in detecting welfare status and housing conditions in dairy cows.
Funder
Natural Sciences and Engineering Research Council of Canada
FRQNT-CRIBIQ-Novalait
Subject
Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献